SYLLABUS

FOR

OPEN COURSES

OPEN COURSE STRUCTURE

(FOR STUDENTS OTHER THAN B.Sc. CHEMISTRY) Total Credits: 3 (Internal 20%; External 80%)

Semester	Code No	Course Title	Hrs/ Week	Total Hrs	Marks
	CHE5D01	Open Course 1: Environmental Chemistry			
V	CHE5D02	Open Course 2: Chemistry in Daily Life	3	48	75
	CHE5D03	Open Course 3: Food Science and Medicinal Chemistry		'	

SEMESTER V

Course Code: CHE5D01

Open Course 1: ENVIRONMENTAL CHEMISTRY

Total Hours: 48; Credits: 3; Hours/Week: 3; Total Marks 75 (Internal 15 & External 60)

Course outcomes

At the end of the course, students will be able to:

- CO 1: Recall the technical/scientific terms involved in pollution.
- CO 2: Understand the causes and effects of air pollution.
- CO 3: Understand the sources, types and effects of water pollution.
- CO 4: Describe water quality parameters.
- CO 5: Know soil, noise, thermal and radioactive pollutions and their effects.
- CO 6: Study various pollution control measures.
- CO 7: Understand the basics of green chemistry.

Module I: Introduction to Environment and Environmental pollution (4 hrs)

Environmental chemistry - introduction, Environmental segments - Lithosphere: components of soils, Hydrosphere: water resources, Biosphere, Atmosphere - regions of atmosphere - Troposphere, stratosphere, mesosphere, thermosphere.

Environmental pollution – Concepts and definition – Pollutant, contaminant, receptor and sink – Classification of pollutants – Global, regional, local, persistent and non-persistent pollutants.

References

- 1. A. K. De, Environmental Chemistry, 7th Edn., New Age International, 2012.
- 2. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.
- 3. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt Ltd, 2010.

Module II: Air Pollution (8 hrs)

Tropospheric pollution – Gaseous air pollutants – Hydrocarbons, oxides of sulphur, nitrogen and carbon – Global warming, green house effect, acid rain – Particulates – Smog: London smog and photochemical smog – effects and control of photochemical smog – stratospheric pollution - depletion of ozone layer, chlorofluorocarbons - Automobile pollution. Control of air pollution – Alternate refrigerants – Bhopal Tragedy (a brief study). Air pollution in Indian cities (Delhi, Agra and Kanpur).

References

- 1. S. K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.
- 2. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.
- 3. S. E. Manahan, Environmental Chemistry, 8th Edn., CRC Press, Florida, 2004.
- 4. A. K. Ahluwalia, *Environmental Chemistry*, The Energy and Resources Institute, 2017.
- 5. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.

Module III: Water Pollution (10 hrs)

Impurities in water – cause of pollution – natural and anthropogenic – Marine water pollution – Underground water pollution.

Source of water pollution – Industrial waste, Municipal waste, Agricultural waste, Radioactive waste, Petroleum, Pharmaceutical, heavy metal, pesticides, soaps and detergents.

Types of water pollutants: Biological agents, physical agents and chemical agents – Eutrophication - biomagnification and bioaccumulation.

Water quality parameters: DO, BOD, COD, alkalianity, hardness, chloride, fluoride and nitrate. Toxic metals in water and their effects: Cadmium, lead and mercury – Minamata disaster (a brief study), itai-itai disease, oil pollution in water. International standards for drinking water.

References

- 1. S. K. Banergy, *Environmental Chemistry*, 2nd Edn., Prentice-Hall of India Pvt. Ltd., New Delhi, 2005.
- 2. J. M. H. Selendy, *Water and Sanitation-Related Diseases and the Changing Environment*, John Wiley & Sons, 2011.
- 3. P. K. Goel, Water Pollution: Causes, Effects and Control, New Age International, 2006.
- 4. V. N. Bashkin, *Environmental Chemistry: Asian Lessons*, Springer Science & Business Media, 2003.
- 5. S. E. Manahan, *Environmental Chemistry*, 8th Edn., CRC Press, Florida, 2004.
- 6. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.
- 7. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.

Module IV: Soil, Noise, Thermal, light and Radioactive Pollutions (8 hrs)

Soil pollution: Sources by industrial and urban wastes. Pollution due to plastics, pesticides, biomedical waste and *e-waste* (source, effects and control measures) – Control of soil

pollution - Solid waste Management - Open dumping, landfilling, incineration, re-use, reclamation, recycle, composting.

Non-degradable, degradable and biodegradable wastes. Hazardous waste.

Noise Pollution – physiological response to noise, Noise categories - effect of noise – biological effects.

Thermal pollution – definition, sources, harmful effects and prevention. Light pollution.

Radioactive pollution (source, effects and control measures) – Hiroshima, Nagasaki and Chernobyl accidents (brief study). Endosulfan disaster in Kerala (brief study).

References

- 1. S. E. Manahan, Environmental Chemistry, 8th Edn., CRC Press, Florida, 2004.
- 2. A. K. Ahluwalia, Environmental Chemistry, The Energy and Resources Institute, 2017.
- 3. A. K. De, *Environmental Chemistry*, 6th Edn., New Age International.
- 4. Balram Pani, Textbook of Environmental Chemistry, I. K. International Pvt. Ltd., 2010.
- 5. Anindita Basak, Environmental Studies, Pearson Education India, 2009.
- 6. Pallavi Saxena, Vaishali Naik, Air Pollution: Sources, Impacts and Controls, CAB International, 2018.

Module V: Pollution Control Measures (12 hrs)

Air pollution control measures – Gravitational settling chamber, fabric filter, wet scrubber, catalytic converters, stacks and chimneys, cyclone collectors, Cottrell electrostatic precipitator, extraction ventilator, zoning and green belt.

References

- 1. N. P Cheremisinoff, Handbook of Air Pollution Prevention and Control, 2002.
- 2. M. Senapati, Advanced Engineering Chemistry, 2006.
- 3. K. C. Schifftner, Air Pollution Control Equipment Selection Guide, CRC Press, 2013.
- 4. K. B. Schnelle, C. A. Brown, Air Pollution Control Technology Handbook, CRC Press, 2016.

Module VI: Green Chemistry (6 hrs)

Introduction- Definition of green Chemistry, need of green chemistry, basic principles of green chemistry. Applications of green chemistry in daily life.

References

- 1. V.K. Ahluwalia, M. Kidwai, *New Trends in Green Chemistry*, Springer Science & Business Media, 2012.
- 2. M. Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry, 2010.
- 3. S. C. Ameta, R. Ameta, Green Chemistry: Fundamentals and Applications, CRC Press,

2013.

Scheme of Examinations:

The external question paper carries 60 marks and internal examination is of 15 marks. Duration of each external examination is 2 Hrs. The pattern of External Examination is as given below:

Ceiling – 20	
Ceiling – 30	
1x10=10	

The students can answer all the questions in sections A & B but there shall be ceiling.

Mark Distribution			
Module I	9 Marks		
Module II	14 Marks		
Module III	18 Marks		
Module IV	14 Marks		
Module V	16 Marks		
Module VI	8 Marks		